Skrining Fitokimia, Profil Kromatografi Lapis Tipis dan Karakterisasi FTIR Ekstrak Etanol Daun Rambutan (Nephelium lappaceum L.)

Penulis

  • Adinda Seftia Institut Kesehatan Medistra Lubuk Pakam Penulis
  • Suprianto Institut Kesehatan Medistra Lubuk Pakam Penulis
  • Effendy De Lux Putra Universitas Sumatera Utara Penulis
  • Samran Institut Kesehatan Medistra Lubuk Pakam Penulis
  • Siti Nurbaya Universitas Sari Mutiara Indonesia Penulis

DOI:

https://doi.org/10.52622/jisk.v6i3.02

Kata Kunci:

Nephelium lappaceum, skrining fitokimia, TLC, FTIR, ekstrak etanol

Abstrak

Latar Belakang: Daun rambutan (Nephelium lappaceum L.) berpotensi sebagai sumber metabolit sekunder bioaktif, namun data dasar mengenai profil kimia awal dan fitur gugus fungsionalnya masih terbatas. Tujuan: Penelitian ini bertujuan untuk (i) menyeleksi konstituen fitokimia ekstrak etanol daun rambutan, (ii) memverifikasi kelas metabolit utama menggunakan kromatografi lapis tipis (TLC), dan (iii) mengkarakterisasi gugus fungsional dominan dengan spektroskopi Fourier Transform Infrared (FTIR). Metode: Daun rambutan kering yang dikumpulkan dari Kabupaten Langkat dan Kota Binjai diekstraksi dengan maserasi menggunakan etanol 96% (1:10; 3×24 jam), diikuti dengan remaserasi (1×24 jam). Filtrat dipekatkan pada suhu 58 °C. Uji kualitatif dilakukan untuk alkaloid, flavonoid, tanin, saponin, dan steroid. Analisis TLC menggunakan pelat silika gel 60 F254 dengan fase gerak spesifik kelas, sedangkan spektrum FTIR direkam dalam rentang 4000–600 cm⁻¹. Hasil: Hasil ekstrak adalah 25,7%. Skrining fitokimia mengkonfirmasi keberadaan alkaloid, flavonoid, tanin, saponin, dan steroid, dengan nilai Rf TLC masing-masing 0,70 dan 0,46 (alkaloid), 0,80 (flavonoid), 0,70 (tanin), dan 0,50 (steroid). Pita FTIR pada 3365 cm⁻¹ (O–H), 3010 cm⁻¹ (C–H aromatik), 1629 cm⁻¹ (C=C), dan 1048 cm⁻¹ (C–O) menunjukkan metabolit sekunder teroksigenasi, khususnya senyawa yang berhubungan dengan fenolik. Kesimpulan: Pendekatan skrining fitokimia terintegrasi, TLC, dan FTIR memberikan dasar kimia yang ringkas untuk ekstrak etanol daun rambutan, mendukung potensi penggunaannya dalam standardisasi lebih lanjut dan studi berbasis penanda.

Unduhan

Data unduhan tidak tersedia.

Referensi

D. M. Rani et al., “Anti-Cancer Bioprospecting on Medicinal Plants from Indonesia: A Review,” Phytochemistry, vol. 216, p. 113881, 2023. DOI: https://doi.org/10.1016/j.phytochem.2023.113881

V. Á. Valverde et al., “Antioxidant and Antibacterial Extracts from Rambutan (Nephelium lappaceum) Skins: Exploring the Potential of Transforming Agricultural Byproducts into Functional Supplements,” Tecnol. en Marcha, vol. 37, no. 3, pp. 57–67, 2024.

S. Torgbo, P. Rugthaworn, U. Sukatta, and P. Sukyai, “Biological Characterization and Quantification of Rambutan (Nephelium lappaceum L.) Peel Extract as a Potential Source of Valuable Minerals and Ellagitannins for Industrial Applications,” ACS omega, vol. 7, no. 38, pp. 34647–34656, 2022. DOI: https://doi.org/10.1021/acsomega.2c04646

N. N. M. Phuong, T. T. Le, M. Q. Dang, J. Van Camp, and K. Raes, “Selection of Extraction Conditions of Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Peel,” Food Bioprod. Process., vol. 122, pp. 222–229, 2020. DOI: https://doi.org/10.1016/j.fbp.2020.05.008

N. P. Nirmal et al., “Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry,” Foods, vol. 12, no. 3, p. 556, 2023. DOI: https://doi.org/10.3390/foods12030556

S. Maqsood et al., “Valorization of Plant-Based Agro-Industrial Waste and by-Product for The Production of Polysaccharide: Towards a More Circular Economy,” Appl. Food Res., p. 100954, 2025. DOI: https://doi.org/10.1016/j.afres.2025.100954

N. R. Putra et al., “Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review,” South African J. Chem. Eng., vol. 46, no. 1, pp. 88–98, 2023. DOI: https://doi.org/10.1016/j.sajce.2023.08.002

N. W. Muyumba, S. C. Mutombo, H. Sheridan, A. Nachtergael, and P. Duez, “Quality Control of Herbal Drugs and Preparations: The Methods of Analysis, Their Relevance and Applications,” Talanta Open, vol. 4, p. 100070, 2021. DOI: https://doi.org/10.1016/j.talo.2021.100070

K. Godlewska, P. Pacyga, A. Szumny, A. Szymczycha-Madeja, M. Wełna, and I. Michalak, “Methods for Rapid Screening of Biologically Active Compounds Present in Plant-Based Extracts,” Molecules, vol. 27, no. 20, p. 7094, 2022. DOI: https://doi.org/10.3390/molecules27207094

J. M. Fernandes et al., “Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective,” Separations, vol. 12, no. 11, p. 289, 2025. DOI: https://doi.org/10.3390/separations12110289

T. Zheng et al., “Proposal of a New Chemical Marker for The Quality Control of The Herb Scleromitrion diffusum,” Front. Chem., vol. 13, p. 1600769, 2025. DOI: https://doi.org/10.3389/fchem.2025.1600769

S. Thummajitsakul, S. Samaikam, S. Tacha, and K. Silprasit, “Study on FTIR Spectroscopy, Total Phenolic Content, Antioxidant Activity and Anti-Amylase Activity of Extracts and Different tea forms of Garcinia schomburgkiana Leaves,” Lwt, vol. 134, p. 110005, 2020. DOI: https://doi.org/10.1016/j.lwt.2020.110005

A. R. Abubakar and M. Haque, “Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes,” J. Pharm. Bioallied Sci., vol. 12, no. 1, pp. 1–10, 2020. DOI: https://doi.org/10.4103/jpbs.JPBS_175_19

B. Ndezo Bisso, R. Njikang Epie Nkwelle, R. Tchuenguem Tchuenteu, and J. P. Dzoyem, “Phytochemical Screening, Antioxidant, and Antimicrobial Activities of Seven Underinvestigated Medicinal Plants Against Microbial Pathogens,” Adv. Pharmacol. Pharm. Sci., vol. 2022, no. 1, p. 1998808, 2022. DOI: https://doi.org/10.1155/2022/1998808

N. N. Azwanida, “A Review on The Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation,” Med aromat plants, vol. 4, no. 196, pp. 412–2167, 2015.

C. Bitwell, S. Sen Indra, C. Luke, and M. K. Kakoma, “A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants,” Sci. African, vol. 19, p. e01585, 2023. DOI: https://doi.org/10.1016/j.sciaf.2023.e01585

C. Hernández-Hernández et al., “Rambutan (Nephelium lappaceum L.): Nutritional and Functional Properties,” Trends food Sci. Technol., vol. 85, pp. 201–210, 2019. DOI: https://doi.org/10.1016/j.tifs.2019.01.018

W. M. Kedir, A. K. Geletu, G. S. Weldegirum, and M. F. Sima, “Antioxidant Activity of Selected Plants Extract for Palm Oil Stability via Accelerated and Deep Frying Study,” Heliyon, vol. 9, no. 7, 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e17980

E. K. Kumatia, F. Ofosu-Koranteng, A. A. Appiah, and K. B. Barimah, “Standardization and Quality Control of the Herbal Medicine Mist Nibima, Employed to Treat Malaria and COVID‐19, Using Physicochemical and Organoleptic Parameters and Quantification of Chemical Markers via UHPLC‐MS/MS,” Int. J. Anal. Chem., vol. 2021, no. 1, p. 6390481, 2021. DOI: https://doi.org/10.1155/2021/6390481

D. Gherdaoui et al., “Kinetic Modeling, Comparative Investigations, and a New Approach to Quantifying the Global Extraction Yield of Algerian Pomegranate Peel Phenolic Compounds,” AppliedChem, vol. 5, no. 2, p. 11, 2025. DOI: https://doi.org/10.3390/appliedchem5020011

M. Angelina et al., “Physicochemical and Phytochemical Standardization, and Antibacterial Evaluation of Cassia alata Leaves from Different Locations in Indonesia,” Pharmacia, vol. 68, pp. 947–956, 2021. DOI: https://doi.org/10.3897/pharmacia.68.e76835

M. Naseer and M. Adil, “Phytochemical Profiling, HPLC Analysis, and Antimicrobial Potential of Curio radicans (L. f.) PV Heath,” Sci. Rep., vol. 15, no. 1, p. 34753, 2025. DOI: https://doi.org/10.1038/s41598-025-18323-0

M. O. Faruq, A. Rahim, M. Arifuzzaman, and G. P. Ghosh, “Phytochemicals Screening, Nutritional Assessment and Antioxidant Activities of A. viridis L. and A. spinosus L. Leaves: A Comparative Study,” J. Agric. Food Res., vol. 18, p. 101341, 2024. DOI: https://doi.org/10.1016/j.jafr.2024.101341

M. Alemu et al., “Antibacterial Activity and Phytochemical Screening of Traditional Medicinal Plants Most Preferred for Treating Infectious Iiseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia,” PLoS One, vol. 19, no. 3, p. e0300060, 2024. DOI: https://doi.org/10.1371/journal.pone.0300060

M. Zych and A. Pyka-Pająk, “TLC in the Analysis of Plant Material,” Processes, vol. 13, no. 11, p. 3497, 2025. DOI: https://doi.org/10.3390/pr13113497

A. Raal et al., “Dragendorff’s Reagent: Historical Perspectives and Current Status of a Versatile Reagent Introduced Over 150 Years Ago at The University of Dorpat, Tartu, Estonia,” Die Pharm. Int. J. Pharm. Sci., vol. 75, no. 7, pp. 299–306, 2020.

J. Silver, “Let us Teach Proper Thin Layer Chromatography Technique!,” J. Chem. Educ., vol. 97, no. 12, pp. 4217–4219, 2020. DOI: https://doi.org/10.1021/acs.jchemed.0c00437

C. Socaciu et al., “Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control The Botanical Authenticity and Quality of ColdPpressed Functional Oils Commercialized in Romania,” Appl. Sci., vol. 10, no. 23, p. 8695, 2020. DOI: https://doi.org/10.3390/app10238695

S. Banik, S. K. Melanthota, A. A. Vannathan, K. K. Mahato, S. S. Mal, and N. Mazumder, “Spectroscopic Methods for Assessment of Hand Sanitizers,” Chem. Pap., vol. 76, no. 8, pp. 4907–4918, 2022. DOI: https://doi.org/10.1007/s11696-022-02208-x

P. Semeraro et al., “A Simple Strategy Based on ATR-FTIR Difference Spectroscopy to Monitor Substrate Intake and Metabolite Release by Growing Bacteria,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 302, p. 123031, 2023. DOI: https://doi.org/10.1016/j.saa.2023.123031

Q. Wen et al., “Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots,” Sensors, vol. 25, no. 1, p. 50, 2024. DOI: https://doi.org/10.3390/s25010050

A. J. Seukep et al., “Potential of Methanol Extracts of Nephelium lappaceum (Sapindaceae) and Hyphaene thebaica (Arecaceae) as Adjuvants to Enhance The Efficacy of Antibiotics Against Critical Class Priority Bacteria,” PLoS One, vol. 20, no. 2, p. e0314958, 2025. DOI: https://doi.org/10.1371/journal.pone.0314958

J.-E. Lee et al., “The Influence of Solvent Choice on The Extraction of Bioactive Compounds from Asteraceae: A Comparative Review,” Foods, vol. 13, no. 19, p. 3151, 2024. DOI: https://doi.org/10.3390/foods13193151

P. Bhattacharjee, S. Das, S. K. Das, and S. Chander, “Rambutan (Nephelium lappaceum L.): A Potential Fruit for Industrial Use, Serving Nutraceutical and Livelihood Interests and Enhancing Climate resilience,” South African J. Bot., vol. 150, pp. 26–33, 2022. DOI: https://doi.org/10.1016/j.sajb.2022.06.064

C. Sun, Z. Wu, Z. Wang, and H. Zhang, “Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts,” Evidence‐Based Complement. Altern. Med., vol. 2015, no. 1, p. 595393, 2015. DOI: https://doi.org/10.1155/2015/595393

A. I. Dirar, D. H. M. Alsaadi, M. Wada, M. A. Mohamed, T. Watanabe, and H. P. Devkota, “Effects of Extraction Solvents on Total Phenolic and Flavonoid Contents and Biological Activities of Extracts from Sudanese Medicinal Plants,” South African J. Bot., vol. 120, pp. 261–267, 2019. DOI: https://doi.org/10.1016/j.sajb.2018.07.003

E. Nortjie, M. Basitere, D. Moyo, and P. Nyamukamba, “Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review,” Plants, vol. 11, no. 15, p. 2011, 2022. DOI: https://doi.org/10.3390/plants11152011

K. Florkowska, B. H. Roman, D. Maciejewska-Markiewicz, and K. Cybulska, “Extraction-Dependent Antioxidant Activity of Red Horse Chestnut (Aesculus× carnea, Family Sapindaceae) Plant Parts,” Molecules, vol. 30, no. 23, p. 4550, 2025. DOI: https://doi.org/10.3390/molecules30234550

S. Rai, E. Acharya-Siwakoti, A. Kafle, H. P. Devkota, and A. Bhattarai, “Plant-Derived Saponins: a Review of Their Surfactant Properties and Applications,” Sci, vol. 3, no. 4, p. 44, 2021. DOI: https://doi.org/10.3390/sci3040044

T. B. Schreiner, M. M. Dias, M. F. Barreiro, and S. P. Pinho, “Saponins as Natural Emulsifiers for Nanoemulsions,” J. Agric. Food Chem., vol. 70, no. 22, pp. 6573–6590, 2022. DOI: https://doi.org/10.1021/acs.jafc.1c07893

X. Zheng and G. Gallot, “Dynamics of Cell Membrane Permeabilization by Saponins Using Terahertz attenuated Total Reflection,” Biophys. J., vol. 119, no. 4, pp. 749–755, 2020. DOI: https://doi.org/10.1016/j.bpj.2020.05.040

I. D. Wilson and C. F. Poole, “Planar Chromatography–Current Practice and Future Prospects,” J. Chromatogr. B, vol. 1214, p. 123553, 2023. DOI: https://doi.org/10.1016/j.jchromb.2022.123553

H. Xu et al., “High-Throughput Discovery of Chemical Structure-Polarity Relationships Combining Automation and Machine-Learning Techniques,” Chem, vol. 8, no. 12, pp. 3202–3214, 2022. DOI: https://doi.org/10.1016/j.chempr.2022.08.008

J. Garg, G. Ghoshal, S. K. Bhadada, and O. P. Katare, “Derivatisation Mechanistic-Guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, vol. 4, no. 3, p. 100601, 2024. DOI: https://doi.org/10.1016/j.phyplu.2024.100601

A. Krakowska-Sieprawska, A. Kiełbasa, K. Rafińska, M. Ligor, and B. Buszewski, “Modern Methods of Pre-treatment of Plant Material for The Extraction of Bioactive Compounds,” Molecules, vol. 27, no. 3, p. 730, 2022. DOI: https://doi.org/10.3390/molecules27030730

O. Mykhailenko, L. Ivanauskas, I. Bezruk, L. Sidorenko, R. Lesyk, and V. Georgiyants, “Characterization of Phytochemical Components of Crocus sativus Leaves: a New Attractive by-Product,” Sci. Pharm., vol. 89, no. 2, p. 28, 2021. DOI: https://doi.org/10.3390/scipharm89020028

D. M. El-Kersh et al., “Anti-Estrogenic and Anti-Aromatase Activities of Citrus Peels Major Compounds in Breast Cancer,” Sci. Rep., vol. 11, no. 1, p. 7121, 2021. DOI: https://doi.org/10.1038/s41598-021-86599-z

S. Agatonovic-Kustrin, V. Gegechkori, D. S. Petrovich, K. T. Ilinichna, and D. W. Morton, “HPTLC and FTIR Fingerprinting of Olive Leaves Extracts and ATR-FTIR Characterisation of Major Flavonoids and Polyphenolics,” Molecules, vol. 26, no. 22, p. 6892, 2021. DOI: https://doi.org/10.3390/molecules26226892

V. Darina, V. Gegechkori, D. W. Morton, and S. Agatonovic-Kustrin, “The Impact of Spontaneous Fermentation on Phenolic and Antioxidant Profiles of Selected Aromatic Plant Extracts,” JPC–Journal Planar Chromatogr. TLC, pp. 1–9, 2025. DOI: https://doi.org/10.1007/s00764-025-00340-4

H. Jantapaso and P. Mittraparp-Arthorn, “Phytochemical Composition and Bioactivities of Aqueous Extract of Rambutan (Nephelium lappaceum L. cv. Rong Rian) Peel,” Antioxidants, vol. 11, no. 5, p. 956, 2022. DOI: https://doi.org/10.3390/antiox11050956

A. B. A. Khair, N. A. A. Razak, A. H. Buniamin, A. N. Shuid, F. A. Nordin, and D. Shahbuddin, “Phytochemical Screening and Antimicrobial Activities of Leaf Extracts of Five Nephelium lappaceum cultivars from Malaysia,” Pak. J. Bot, vol. 56, no. 6, pp. 2305–2313, 2024. DOI: https://doi.org/10.30848/PJB2024-6(31)

B. Kaboré et al., “High-Performance Thin-Layer Chromatography Phytochemical Profiling, Antioxidant Activities, and Acute Toxicity of Leaves Extracts of Lannea velutina A. Rich,” Rich. J. Med. Chem. Sci, vol. 6, pp. 410–423, 2023.

A. M. El‑Feky and A. A. El-Rashedy, “Sterols and Flavonoids in Strawberry Calyx with Free Radical Scavenging, Anti-Inflammatory, and Molecular Dynamic Study,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 12, no. 1, p. 108, 2023. DOI: https://doi.org/10.1186/s43088-023-00445-x

P. Wongsa, P. Phatikulrungsun, and S. Prathumthong, “FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential Against Digestive Enzymes of 25 Herbal Infusions,” Sci. Rep., vol. 12, no. 1, p. 6631, 2022. DOI: https://doi.org/10.1038/s41598-022-10669-z

Y. Li, Y. Shen, C. Yao, and D. Guo, “Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Rreview,” J. Pharm. Biomed. Anal., vol. 185, p. 113215, 2020. DOI: https://doi.org/10.1016/j.jpba.2020.113215

E. Noviana, G. Indrayanto, and A. Rohman, “Advances in Fingerprint Analysis for Standardization and Quality Control of Herbal Medicines,” Front. Pharmacol., vol. 13, p. 853023, 2022. DOI: https://doi.org/10.3389/fphar.2022.853023

S. Chigurupati et al., “Identification of Nephelium lappaceum Leaves Phenolic and Flavonoid Component with Radical Scavenging, Antidiabetic and Antibacterial Potential.,” Indian J. Tradit. Knowl., vol. 18, no. 2, 2019.

Diterbitkan

2025-12-30

Cara Mengutip

[1]
Adinda Seftia, Suprianto, Effendy De Lux Putra, Samran, and Siti Nurbaya , Trans., “Skrining Fitokimia, Profil Kromatografi Lapis Tipis dan Karakterisasi FTIR Ekstrak Etanol Daun Rambutan (Nephelium lappaceum L.)”, jisk, vol. 6, no. 3, pp. 10–19, Dec. 2025, doi: 10.52622/jisk.v6i3.02.

Artikel Serupa

1-10 dari 43

Anda juga bisa Mulai pencarian similarity tingkat lanjut untuk artikel ini.

Artikel paling banyak dibaca berdasarkan penulis yang sama

1 2 3 4 > >>