Skrining Fitokimia, Profil Kromatografi Lapis Tipis dan Karakterisasi FTIR Ekstrak Etanol Daun Rambutan (Nephelium lappaceum L.)

Authors

  • Adinda Seftia Institut Kesehatan Medistra Lubuk Pakam Author
  • Suprianto Institut Kesehatan Medistra Lubuk Pakam Author
  • Effendy De Lux Putra Universitas Sumatera Utara Author
  • Samran Institut Kesehatan Medistra Lubuk Pakam Author
  • Siti Nurbaya Universitas Sari Mutiara Indonesia Author

DOI:

https://doi.org/10.52622/jisk.v6i3.02

Keywords:

Nephelium lappaceum, phytochemical screening, TLC, FTIR, ethanol extract

Abstract

Background: Rambutan (Nephelium lappaceum L.) leaves have potential as a source of bioactive secondary metabolites, yet baseline data on their preliminary chemical profile and functional-group features are still limited. Objective: This study aimed to (i) screen the phytochemical constituents of rambutan leaf ethanol extract, (ii) verify major metabolite classes using thin-layer chromatography (TLC), and (iii) characterize dominant functional groups by Fourier Transform Infrared (FTIR) spectroscopy. Method: Dried rambutan leaves collected from Langkat Regency and Binjai City were extracted by maceration with 96% ethanol (1:10; 3×24 h), followed by remaceration (1×24 h). The filtrate was concentrated at 58 °C. Qualitative tests were conducted for alkaloids, flavonoids, tannins, saponins, and steroids. TLC analysis employed silica gel 60 F254 plates with class-specific mobile phases, while FTIR spectra were recorded in the range of 4000–600 cm⁻¹. Results: The extract yield was 25.7%. Phytochemical screening confirmed the presence of alkaloids, flavonoids, tannins, saponins, and steroids, with TLC Rf values of 0.70 and 0.46 (alkaloids), 0.80 (flavonoids), 0.70 (tannins), and 0.50 (steroids). FTIR bands at 3365 cm⁻¹ (O–H), 3010 cm⁻¹ (aromatic C–H), 1629 cm⁻¹ (C=C), and 1048 cm⁻¹ (C–O) indicated oxygenated secondary metabolites, particularly phenolic-related compounds. Conclusion: The integrated phytochemical screening, TLC, and FTIR approach provides a concise chemical baseline for rambutan leaf ethanol extract, supporting its potential use in further standardization and marker-based studies.

Downloads

Download data is not yet available.

References

D. M. Rani et al., “Anti-Cancer Bioprospecting on Medicinal Plants from Indonesia: A Review,” Phytochemistry, vol. 216, p. 113881, 2023. DOI: https://doi.org/10.1016/j.phytochem.2023.113881

V. Á. Valverde et al., “Antioxidant and Antibacterial Extracts from Rambutan (Nephelium lappaceum) Skins: Exploring the Potential of Transforming Agricultural Byproducts into Functional Supplements,” Tecnol. en Marcha, vol. 37, no. 3, pp. 57–67, 2024.

S. Torgbo, P. Rugthaworn, U. Sukatta, and P. Sukyai, “Biological Characterization and Quantification of Rambutan (Nephelium lappaceum L.) Peel Extract as a Potential Source of Valuable Minerals and Ellagitannins for Industrial Applications,” ACS omega, vol. 7, no. 38, pp. 34647–34656, 2022. DOI: https://doi.org/10.1021/acsomega.2c04646

N. N. M. Phuong, T. T. Le, M. Q. Dang, J. Van Camp, and K. Raes, “Selection of Extraction Conditions of Phenolic Compounds from Rambutan (Nephelium lappaceum L.) Peel,” Food Bioprod. Process., vol. 122, pp. 222–229, 2020. DOI: https://doi.org/10.1016/j.fbp.2020.05.008

N. P. Nirmal et al., “Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry,” Foods, vol. 12, no. 3, p. 556, 2023. DOI: https://doi.org/10.3390/foods12030556

S. Maqsood et al., “Valorization of Plant-Based Agro-Industrial Waste and by-Product for The Production of Polysaccharide: Towards a More Circular Economy,” Appl. Food Res., p. 100954, 2025. DOI: https://doi.org/10.1016/j.afres.2025.100954

N. R. Putra et al., “Advancements and Challenges in Green Extraction Techniques for Indonesian Natural Products: A Review,” South African J. Chem. Eng., vol. 46, no. 1, pp. 88–98, 2023. DOI: https://doi.org/10.1016/j.sajce.2023.08.002

N. W. Muyumba, S. C. Mutombo, H. Sheridan, A. Nachtergael, and P. Duez, “Quality Control of Herbal Drugs and Preparations: The Methods of Analysis, Their Relevance and Applications,” Talanta Open, vol. 4, p. 100070, 2021. DOI: https://doi.org/10.1016/j.talo.2021.100070

K. Godlewska, P. Pacyga, A. Szumny, A. Szymczycha-Madeja, M. Wełna, and I. Michalak, “Methods for Rapid Screening of Biologically Active Compounds Present in Plant-Based Extracts,” Molecules, vol. 27, no. 20, p. 7094, 2022. DOI: https://doi.org/10.3390/molecules27207094

J. M. Fernandes et al., “Flavonoids as Markers in Herbal Medicine Quality Control: Current Trends and Analytical Perspective,” Separations, vol. 12, no. 11, p. 289, 2025. DOI: https://doi.org/10.3390/separations12110289

T. Zheng et al., “Proposal of a New Chemical Marker for The Quality Control of The Herb Scleromitrion diffusum,” Front. Chem., vol. 13, p. 1600769, 2025. DOI: https://doi.org/10.3389/fchem.2025.1600769

S. Thummajitsakul, S. Samaikam, S. Tacha, and K. Silprasit, “Study on FTIR Spectroscopy, Total Phenolic Content, Antioxidant Activity and Anti-Amylase Activity of Extracts and Different tea forms of Garcinia schomburgkiana Leaves,” Lwt, vol. 134, p. 110005, 2020. DOI: https://doi.org/10.1016/j.lwt.2020.110005

A. R. Abubakar and M. Haque, “Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes,” J. Pharm. Bioallied Sci., vol. 12, no. 1, pp. 1–10, 2020. DOI: https://doi.org/10.4103/jpbs.JPBS_175_19

B. Ndezo Bisso, R. Njikang Epie Nkwelle, R. Tchuenguem Tchuenteu, and J. P. Dzoyem, “Phytochemical Screening, Antioxidant, and Antimicrobial Activities of Seven Underinvestigated Medicinal Plants Against Microbial Pathogens,” Adv. Pharmacol. Pharm. Sci., vol. 2022, no. 1, p. 1998808, 2022. DOI: https://doi.org/10.1155/2022/1998808

N. N. Azwanida, “A Review on The Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation,” Med aromat plants, vol. 4, no. 196, pp. 412–2167, 2015.

C. Bitwell, S. Sen Indra, C. Luke, and M. K. Kakoma, “A Review of Modern and Conventional Extraction Techniques and Their Applications for Extracting Phytochemicals from Plants,” Sci. African, vol. 19, p. e01585, 2023. DOI: https://doi.org/10.1016/j.sciaf.2023.e01585

C. Hernández-Hernández et al., “Rambutan (Nephelium lappaceum L.): Nutritional and Functional Properties,” Trends food Sci. Technol., vol. 85, pp. 201–210, 2019. DOI: https://doi.org/10.1016/j.tifs.2019.01.018

W. M. Kedir, A. K. Geletu, G. S. Weldegirum, and M. F. Sima, “Antioxidant Activity of Selected Plants Extract for Palm Oil Stability via Accelerated and Deep Frying Study,” Heliyon, vol. 9, no. 7, 2023. DOI: https://doi.org/10.1016/j.heliyon.2023.e17980

E. K. Kumatia, F. Ofosu-Koranteng, A. A. Appiah, and K. B. Barimah, “Standardization and Quality Control of the Herbal Medicine Mist Nibima, Employed to Treat Malaria and COVID‐19, Using Physicochemical and Organoleptic Parameters and Quantification of Chemical Markers via UHPLC‐MS/MS,” Int. J. Anal. Chem., vol. 2021, no. 1, p. 6390481, 2021. DOI: https://doi.org/10.1155/2021/6390481

D. Gherdaoui et al., “Kinetic Modeling, Comparative Investigations, and a New Approach to Quantifying the Global Extraction Yield of Algerian Pomegranate Peel Phenolic Compounds,” AppliedChem, vol. 5, no. 2, p. 11, 2025. DOI: https://doi.org/10.3390/appliedchem5020011

M. Angelina et al., “Physicochemical and Phytochemical Standardization, and Antibacterial Evaluation of Cassia alata Leaves from Different Locations in Indonesia,” Pharmacia, vol. 68, pp. 947–956, 2021. DOI: https://doi.org/10.3897/pharmacia.68.e76835

M. Naseer and M. Adil, “Phytochemical Profiling, HPLC Analysis, and Antimicrobial Potential of Curio radicans (L. f.) PV Heath,” Sci. Rep., vol. 15, no. 1, p. 34753, 2025. DOI: https://doi.org/10.1038/s41598-025-18323-0

M. O. Faruq, A. Rahim, M. Arifuzzaman, and G. P. Ghosh, “Phytochemicals Screening, Nutritional Assessment and Antioxidant Activities of A. viridis L. and A. spinosus L. Leaves: A Comparative Study,” J. Agric. Food Res., vol. 18, p. 101341, 2024. DOI: https://doi.org/10.1016/j.jafr.2024.101341

M. Alemu et al., “Antibacterial Activity and Phytochemical Screening of Traditional Medicinal Plants Most Preferred for Treating Infectious Iiseases in Habru District, North Wollo Zone, Amhara Region, Ethiopia,” PLoS One, vol. 19, no. 3, p. e0300060, 2024. DOI: https://doi.org/10.1371/journal.pone.0300060

M. Zych and A. Pyka-Pająk, “TLC in the Analysis of Plant Material,” Processes, vol. 13, no. 11, p. 3497, 2025. DOI: https://doi.org/10.3390/pr13113497

A. Raal et al., “Dragendorff’s Reagent: Historical Perspectives and Current Status of a Versatile Reagent Introduced Over 150 Years Ago at The University of Dorpat, Tartu, Estonia,” Die Pharm. Int. J. Pharm. Sci., vol. 75, no. 7, pp. 299–306, 2020.

J. Silver, “Let us Teach Proper Thin Layer Chromatography Technique!,” J. Chem. Educ., vol. 97, no. 12, pp. 4217–4219, 2020. DOI: https://doi.org/10.1021/acs.jchemed.0c00437

C. Socaciu et al., “Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) Coupled with Chemometrics, to Control The Botanical Authenticity and Quality of ColdPpressed Functional Oils Commercialized in Romania,” Appl. Sci., vol. 10, no. 23, p. 8695, 2020. DOI: https://doi.org/10.3390/app10238695

S. Banik, S. K. Melanthota, A. A. Vannathan, K. K. Mahato, S. S. Mal, and N. Mazumder, “Spectroscopic Methods for Assessment of Hand Sanitizers,” Chem. Pap., vol. 76, no. 8, pp. 4907–4918, 2022. DOI: https://doi.org/10.1007/s11696-022-02208-x

P. Semeraro et al., “A Simple Strategy Based on ATR-FTIR Difference Spectroscopy to Monitor Substrate Intake and Metabolite Release by Growing Bacteria,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 302, p. 123031, 2023. DOI: https://doi.org/10.1016/j.saa.2023.123031

Q. Wen et al., “Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots,” Sensors, vol. 25, no. 1, p. 50, 2024. DOI: https://doi.org/10.3390/s25010050

A. J. Seukep et al., “Potential of Methanol Extracts of Nephelium lappaceum (Sapindaceae) and Hyphaene thebaica (Arecaceae) as Adjuvants to Enhance The Efficacy of Antibiotics Against Critical Class Priority Bacteria,” PLoS One, vol. 20, no. 2, p. e0314958, 2025. DOI: https://doi.org/10.1371/journal.pone.0314958

J.-E. Lee et al., “The Influence of Solvent Choice on The Extraction of Bioactive Compounds from Asteraceae: A Comparative Review,” Foods, vol. 13, no. 19, p. 3151, 2024. DOI: https://doi.org/10.3390/foods13193151

P. Bhattacharjee, S. Das, S. K. Das, and S. Chander, “Rambutan (Nephelium lappaceum L.): A Potential Fruit for Industrial Use, Serving Nutraceutical and Livelihood Interests and Enhancing Climate resilience,” South African J. Bot., vol. 150, pp. 26–33, 2022. DOI: https://doi.org/10.1016/j.sajb.2022.06.064

C. Sun, Z. Wu, Z. Wang, and H. Zhang, “Effect of Ethanol/Water Solvents on Phenolic Profiles and Antioxidant Properties of Beijing Propolis Extracts,” Evidence‐Based Complement. Altern. Med., vol. 2015, no. 1, p. 595393, 2015. DOI: https://doi.org/10.1155/2015/595393

A. I. Dirar, D. H. M. Alsaadi, M. Wada, M. A. Mohamed, T. Watanabe, and H. P. Devkota, “Effects of Extraction Solvents on Total Phenolic and Flavonoid Contents and Biological Activities of Extracts from Sudanese Medicinal Plants,” South African J. Bot., vol. 120, pp. 261–267, 2019. DOI: https://doi.org/10.1016/j.sajb.2018.07.003

E. Nortjie, M. Basitere, D. Moyo, and P. Nyamukamba, “Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review,” Plants, vol. 11, no. 15, p. 2011, 2022. DOI: https://doi.org/10.3390/plants11152011

K. Florkowska, B. H. Roman, D. Maciejewska-Markiewicz, and K. Cybulska, “Extraction-Dependent Antioxidant Activity of Red Horse Chestnut (Aesculus× carnea, Family Sapindaceae) Plant Parts,” Molecules, vol. 30, no. 23, p. 4550, 2025. DOI: https://doi.org/10.3390/molecules30234550

S. Rai, E. Acharya-Siwakoti, A. Kafle, H. P. Devkota, and A. Bhattarai, “Plant-Derived Saponins: a Review of Their Surfactant Properties and Applications,” Sci, vol. 3, no. 4, p. 44, 2021. DOI: https://doi.org/10.3390/sci3040044

T. B. Schreiner, M. M. Dias, M. F. Barreiro, and S. P. Pinho, “Saponins as Natural Emulsifiers for Nanoemulsions,” J. Agric. Food Chem., vol. 70, no. 22, pp. 6573–6590, 2022. DOI: https://doi.org/10.1021/acs.jafc.1c07893

X. Zheng and G. Gallot, “Dynamics of Cell Membrane Permeabilization by Saponins Using Terahertz attenuated Total Reflection,” Biophys. J., vol. 119, no. 4, pp. 749–755, 2020. DOI: https://doi.org/10.1016/j.bpj.2020.05.040

I. D. Wilson and C. F. Poole, “Planar Chromatography–Current Practice and Future Prospects,” J. Chromatogr. B, vol. 1214, p. 123553, 2023. DOI: https://doi.org/10.1016/j.jchromb.2022.123553

H. Xu et al., “High-Throughput Discovery of Chemical Structure-Polarity Relationships Combining Automation and Machine-Learning Techniques,” Chem, vol. 8, no. 12, pp. 3202–3214, 2022. DOI: https://doi.org/10.1016/j.chempr.2022.08.008

J. Garg, G. Ghoshal, S. K. Bhadada, and O. P. Katare, “Derivatisation Mechanistic-Guided Identification of Phytoconstituents of Different Extracts of Cissus quadrangularis by TLC and Standardization by HPTLC,” Phytomedicine Plus, vol. 4, no. 3, p. 100601, 2024. DOI: https://doi.org/10.1016/j.phyplu.2024.100601

A. Krakowska-Sieprawska, A. Kiełbasa, K. Rafińska, M. Ligor, and B. Buszewski, “Modern Methods of Pre-treatment of Plant Material for The Extraction of Bioactive Compounds,” Molecules, vol. 27, no. 3, p. 730, 2022. DOI: https://doi.org/10.3390/molecules27030730

O. Mykhailenko, L. Ivanauskas, I. Bezruk, L. Sidorenko, R. Lesyk, and V. Georgiyants, “Characterization of Phytochemical Components of Crocus sativus Leaves: a New Attractive by-Product,” Sci. Pharm., vol. 89, no. 2, p. 28, 2021. DOI: https://doi.org/10.3390/scipharm89020028

D. M. El-Kersh et al., “Anti-Estrogenic and Anti-Aromatase Activities of Citrus Peels Major Compounds in Breast Cancer,” Sci. Rep., vol. 11, no. 1, p. 7121, 2021. DOI: https://doi.org/10.1038/s41598-021-86599-z

S. Agatonovic-Kustrin, V. Gegechkori, D. S. Petrovich, K. T. Ilinichna, and D. W. Morton, “HPTLC and FTIR Fingerprinting of Olive Leaves Extracts and ATR-FTIR Characterisation of Major Flavonoids and Polyphenolics,” Molecules, vol. 26, no. 22, p. 6892, 2021. DOI: https://doi.org/10.3390/molecules26226892

V. Darina, V. Gegechkori, D. W. Morton, and S. Agatonovic-Kustrin, “The Impact of Spontaneous Fermentation on Phenolic and Antioxidant Profiles of Selected Aromatic Plant Extracts,” JPC–Journal Planar Chromatogr. TLC, pp. 1–9, 2025. DOI: https://doi.org/10.1007/s00764-025-00340-4

H. Jantapaso and P. Mittraparp-Arthorn, “Phytochemical Composition and Bioactivities of Aqueous Extract of Rambutan (Nephelium lappaceum L. cv. Rong Rian) Peel,” Antioxidants, vol. 11, no. 5, p. 956, 2022. DOI: https://doi.org/10.3390/antiox11050956

A. B. A. Khair, N. A. A. Razak, A. H. Buniamin, A. N. Shuid, F. A. Nordin, and D. Shahbuddin, “Phytochemical Screening and Antimicrobial Activities of Leaf Extracts of Five Nephelium lappaceum cultivars from Malaysia,” Pak. J. Bot, vol. 56, no. 6, pp. 2305–2313, 2024. DOI: https://doi.org/10.30848/PJB2024-6(31)

B. Kaboré et al., “High-Performance Thin-Layer Chromatography Phytochemical Profiling, Antioxidant Activities, and Acute Toxicity of Leaves Extracts of Lannea velutina A. Rich,” Rich. J. Med. Chem. Sci, vol. 6, pp. 410–423, 2023.

A. M. El‑Feky and A. A. El-Rashedy, “Sterols and Flavonoids in Strawberry Calyx with Free Radical Scavenging, Anti-Inflammatory, and Molecular Dynamic Study,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 12, no. 1, p. 108, 2023. DOI: https://doi.org/10.1186/s43088-023-00445-x

P. Wongsa, P. Phatikulrungsun, and S. Prathumthong, “FT-IR Characteristics, Phenolic Profiles and Inhibitory Potential Against Digestive Enzymes of 25 Herbal Infusions,” Sci. Rep., vol. 12, no. 1, p. 6631, 2022. DOI: https://doi.org/10.1038/s41598-022-10669-z

Y. Li, Y. Shen, C. Yao, and D. Guo, “Quality Assessment of Herbal Medicines Based on Chemical Fingerprints Combined with Chemometrics Approach: A Rreview,” J. Pharm. Biomed. Anal., vol. 185, p. 113215, 2020. DOI: https://doi.org/10.1016/j.jpba.2020.113215

E. Noviana, G. Indrayanto, and A. Rohman, “Advances in Fingerprint Analysis for Standardization and Quality Control of Herbal Medicines,” Front. Pharmacol., vol. 13, p. 853023, 2022. DOI: https://doi.org/10.3389/fphar.2022.853023

S. Chigurupati et al., “Identification of Nephelium lappaceum Leaves Phenolic and Flavonoid Component with Radical Scavenging, Antidiabetic and Antibacterial Potential.,” Indian J. Tradit. Knowl., vol. 18, no. 2, 2019.

Downloads

Published

30-12-2025

How to Cite

[1]
Adinda Seftia, Suprianto, Effendy De Lux Putra, Samran, and Siti Nurbaya , Trans., “Skrining Fitokimia, Profil Kromatografi Lapis Tipis dan Karakterisasi FTIR Ekstrak Etanol Daun Rambutan (Nephelium lappaceum L.)”, jisk, vol. 6, no. 3, pp. 10–19, Dec. 2025, doi: 10.52622/jisk.v6i3.02.

Similar Articles

1-10 of 43

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2 3 4